97 research outputs found

    Fragnostic: walking through protein structure space

    Get PDF
    The Fragnostic () web tool implements a novel and useful view of protein structure space. We mined a non-redundant subset of the PDB for common fragments shared between proteins inhabiting different SCOP folds. Subsequently, we formulated an inter-fold similarity measure based on fragment sharing. Fold space is described as a graph whose nodes are folds between which the edges are drawn depending on the extent of fragment sharing. In this fashion, Fragnostic helps discover meaningful relationships between proteins belonging to different folds, based on sharing similar fragments in the proteins comprising those folds. Distant fold similarity information is supplemented by annotations taken from Gene Ontology, SCOP and CATH. Overall, Fragnostic is a tool which helps discover structural and functional relationships between proteins which are distantly related or seemingly unrelated

    JAFA: a protein function annotation meta-server

    Get PDF
    With the high number of sequences and structures streaming in from genomic projects, there is a need for more powerful and sophisticated annotation tools. Most problematic of the annotation efforts is predicting gene and protein function. Over the past few years there has been considerable progress in automated protein function prediction, using a diverse set of methods. Nevertheless, no single method reports all the information possible, and molecular biologists resort to ‘shopping around’ using different methods: a cumbersome and time-consuming practice. Here we present the Joined Assembly of Function Annotations, or JAFA server. JAFA queries several function prediction servers with a protein sequence and assembles the returned predictions in a legible, non-redundant format. In this manner, JAFA combines the predictions of several servers to provide a comprehensive view of what are the predicted functions of the proteins. JAFA also offers its own output, and the individual programs' predictions for further processing. JAFA is available for use from

    A large scale prediction of bacteriocin gene blocks suggests a wide functional spectrum for bacteriocins

    Full text link
    Bacteriocins are peptide-derived molecules produced by bacteria, whose recently-discovered functions include virulence factors and signalling molecules as well as their better known roles as antibiotics. To date, close to five hundred bacteriocins have been identified and classified. Recent discoveries have shown that bacteriocins are highly diverse and widely distributed among bacterial species. Given the heterogeneity of bacteriocin compounds, many tools struggle with identifying novel bacteriocins due to their vast sequence and structural diversity. Many bacteriocins undergo post-translational processing or modifications necessary for the biosynthesis of the final mature form. Enzymatic modification of bacteriocins as well as their export is achieved by proteins whose genes are often located in a discrete gene cluster proximal to the bacteriocin precursor gene, referred to as \textit{context genes} in this study. Although bacteriocins themselves are structurally diverse, context genes have been shown to be largely conserved across unrelated species. Using this knowledge, we set out to identify new candidates for context genes which may clarify how bacteriocins are synthesized, and identify new candidates for bacteriocins that bear no sequence similarity to known toxins. To achieve these goals, we have developed a software tool, Bacteriocin Operon and gene block Associator (BOA) that can identify homologous bacteriocin associated gene clusters and predict novel ones. We discover that several phyla have a strong preference for bactericon genes, suggesting distinct functions for this group of molecules. Availability: https://github.com/idoerg/BOAComment: Accepted for publication in BMC Bioinformatic

    Biases in the Experimental Annotations of Protein Function and their Effect on Our Understanding of Protein Function Space

    Get PDF
    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here we investigate just how prevalent is the "few articles -- many proteins" phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments.Comment: Accepted to PLoS Computational Biology. Press embargo applies. v4: text corrected for style and supplementary material inserte
    • …
    corecore